Do Developers Discuss Design?

Jodo Brunet
Federal University of Campina
Grande, Brazil
jarthur@dsc.ufcg.edu.br

Jorge Figueiredo

Gail C. Murphy
University of British Columbia,
Canada
murphy@cs.ubc.ca

Federal University of Campina

Grande, Brazil
abrantes@dsc.ufcg.edu.br

ABSTRACT

Design is often raised in the literature as important to at-
taining various properties and characteristics in a software
system. At least for open-source projects, it can be hard
to find evidence of ongoing design work in the technical ar-
tifacts produced as part of the development. Although de-
velopers usually do not produce specific design documents,
they do communicate about design in different ways. In
this paper, we provide quantitative evidence that develop-
ers address design through discussions in commits, issues,
and pull requests. To achieve this, we built a discussions’
classifier and automatically labeled 102,122 discussions from
77 projects. Based on this data, we make four observations
about the projects: i) on average, 25% of the discussions
in a project are about design; ii) on average, 26% of devel-
opers contribute to at least one design discussion; iii) only
1% of the developers contribute to more than 15% of the
discussions in a project; and iv) these few developers who
contribute to a broad range of design discussions are also
the top committers in a project.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms

Design, Documentation

Keywords

Design Discussions, Machine Learning, Empirical Study

1. INTRODUCTION

Design can be defined as an artifact and also as an ac-
tivity in software development [1]. As an artifact, design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

MSR’14, May 31 — June 1, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597115

340

Ricardo Terra
Federal University of Lavras,
Brazil
terra@dcc.ufla.br

Dalton Serey

Federal University of Campina

Grande, Brazil
dalton@dsc.ufcg.edu.br

is a representation of how a portion of the code should be
organized. As an activity, design is the process of discussing
the structure of the code to organize abstractions and their
relationships. In this context, practitioners and researchers
regard design decisions as a fundamental concern when de-
veloping software [2, 3]. They frequently credit good design
as easy to maintain and evolve, and as a sign of internal
quality. For this reason, ideally, design decisions should be
communicated effectively among the development team.

Open source developers share the majority of the infor-
mation in a project in written form. Despite a plethora of
mailing list archives, issues, commit information, and other
resources associated with an open-source project, it is not
usual to find a design document in project’s archives. For
example, we inspected docs folder, wiki pages, and main web
sites of the top 90 popular projects in GitHub[4] and could
not find any design documentation in 61 (68%) of them.
Even considering those projects that have some documenta-
tion about their design, we could only find explicit technical
artifacts (e.g. UML diagrams) in 7 (9%) projects.

Although no specific artifacts related to design can be
detected in open-source projects, the other media used for
communication, such as issues, commits’ comments, and pull
requests may include design concerns and discussions. To
understand if design information is discussed and shared in
these other forms in open source projects, we conducted an
empirical study on 77 of the top popular projects in GitHub
to provide quantitative evidence on how developers drive
design discussions. Because developers usually approach
structural aspects of design [5], such as communication con-
straints among classes, we focus our study on such aspects.
In this context, we seek to investigate two questions:

e RQ1: To what extent do developers discuss design in
open-source projects?

e RQ2: Which developers discuss design?

To answer these questions, we developed the first contri-
bution of this work — the development and evaluation of a
prototype based on machine learning technique to automati-
cally identify design discussions. Then, using this prototype,
we provide quantitative evidence that, on average, 25% of
the discussions in a project mention some design aspect and
26% of developers contribute to design discussions. In ad-
dition, we found that very few developers contribute to a
broader range of design discussions in a project. We found

102,122 1,000 N agreed Classified
discussions discussions discussions
GHTorrent dataset Sample W W

3 o

ML
Algorithms

':>§;§3%@
8 (o]

Training data
Test data

Figure 1: Methodology applied to build the design discussion classifier.

a strong correlation (74%) between commits and design dis-
cussions contributions, suggesting that developers who con-
tribute with more commits tend to discuss more about the
design of the system. These two contributions may be useful
for several purposes. For instance, one could use this infor-
mation about which developers are involved in design dis-
cussions to drive structural refactorings to this small group
of developers responsible for design. As another example, re-
searchers can use our tool support to automatically uncover
design rules.

We organize this paper as follows. Section 2 describes
our experimental design, including definitions about design
discussions, dataset, and the procedures and measures em-
ployed. Section 3 shows results for our classifier and early
results on analyzing design discussions. Section 4 discusses
some important points related to our results as well as the
relevance of this work. Section 5 briefly discusses related
work, while Section 6 presents our final remarks and dis-
cusses future work.

2. STUDY DESIGN

In our study, we consider a discussion to be a set of com-
ments on pull requests, commits, or issues. Because we were
interested in discussions, we analyzed those pull requests,
commits, and issues with more than one comment. Also, we
consider a discussion to be about design if it contains at least
one comment referring to some design concern. As we said
before, we focus our study on structural characteristics of a
software design. As an example of such structural charac-
teristic, developers usually discuss about avoiding coupling
among unrelated classes or applying a specific design pattern
to solve a design issue.

2.1 Data Set

Of the 90 projects present in the GHTorrent data set [4],
we discarded 13 projects with less than 50 discussions. We
chose the 77 projects with more than 50 discussions to work
with a reasonable amount of data. The more discussions
present in the projects, the more likely they have design
discussions. Due to the fact that we were interested in the
degree of design discussions, we made such decision. In addi-
tion, to simplify our analysis, we treated projects and their
forks as one single project. In summary, our data set in-
cludes 77 projects and 102,122 discussions.

2.2 Methodology
2.2.1 Building the Classifier

Figure 1 shows the steps we conducted to build our design
discussions classifier:

341

Step 1. We randomly selected 5 of the 77 projects. They
are: BitCoin, Akka, OpenFrameworks, Mono, and Twitter-
-Finagle. Then, we randomly selected 200 discussions from
each of these 5 projects, totaling 1,000 discussions.

Step 2. We (two of the authors of this paper) classified
the same set of 1,000 discussions separately. We tagged the
discussions as design discussions or not. To avoid bias, be-
fore the classification, we did not specified or discussed any
specific rules to classify the discussions. However, we stated
that we would focus on structural design aspects. After the
manual classification, we selected for training only the 967
discussions in which both classifications matched. 226 (23%)
of these discussions refer to some design aspect, while 741
(77%) refer to other concerns related to software develop-
ment.

Step 3. We used 10-fold cross validation methodology to
train (steps 3.1 and 3.2) and evaluate (step 3.3) our classifier.
That is, we randomly partitioned discussions into 10 equal
size sets (96 discussions). Then, we use nine of these sets as
training data and one of them as test data. We repeated the
cross-validation process 10 times, using each one of the sets
exactly once as test data. We use the mean of the 10 exe-
cutions to produce an estimation of our classifier’s accuracy.
Using this method, we evaluated Naive Bayes and Decision
Tree classifiers. We removed words from an English stoplist
of common short words. As feature selectors to these classi-
fiers, we used a combination of word frequency and bigrams.
Besides the standard usage of word frequency, we also used
bigrams because researchers have shown that these methods
can significantly improve the results of text classification [6,
7]. For instance, in our context, the bigram “exposes API”
is more representative than the word “exposes” isolated or
combined to other non-related word.

2.2.2 Answering Research Questions

After we have built confidence in our classifier, we rely
on it to label all 102,122 discussions in the data set. Then,
we analyzed the design discussions to answer our research
questions. For the first question, we simply measure, for
each project, the proportion of design discussions over all
discussions. For the second question, we investigated design
discussions and commits to determine:

e the ratio between the number of developers that con-
tribute to design discussions and the number of com-
mitters in a project;

e the proportion of all design discussions in a project
to which a developer has contributed, which we name
Coverage. For instance, if a project has 10 design dis-
cussions and a developer contributes to 5 of these dis-
cussions, the developer has 0.5 of coverage.

Designers proportion
5 o o

Design discussions proportion
S o

(a) Proportion of design
discussions per project.

(b) Proportion of design
discussions contributors.

(

cussions coverage.

Projects

PR
30 40
Coverage (%)

50 60

10

20

B Coverééé %

(d) Developers’
and commits

c¢) Developers’ design dis- coverage

Figure 2: Empirical Results

3. RESULTS

After executing the 10-fold cross validation, the results

show that Decision Tree outperforms the Naive Bayes method.

The former achieved 94 4+ 1% accuracy®, while the latter
achieved 86 + 3%. For this reason, we decided to use the
Decision Tree classifier to automatically label the remaining
discussions.

RQ1: To what extent do developers discuss de-
sign? Of the 102,122 discussions, our classifier labeled 25,123
(25%) as design discussions. As examples, our classifier la-
beled as design concerns the following comments: “I’d be
surprised if this is the way to create RoutedActorRefs” and
“We have the dependency issue that ActorSystem need to
know about all extensions”. Comments such as “See code
style guide. We use underscore style for variable names.”
were not labeled as design.

Figure 2(a) shows the proportions of design discussions
per project. Following the overall proportion, 25 + 6% of
discussions within a project refer to some design aspect. As
we can see by the flattened boxplot, this is a common pattern
among projects. Also, this result reinforces the confidence
in our classifier, once it is similar to our training data, which
shows a proportion of 23% of design discussions.

RQ2: Which developers discuss design? In total, we
analyzed data regarding 22,789 developers from the 77 stud-
ied projects. 8207 (36%) of these developers contribute to at
least one design discussion, while 14,582 (64%) do not. Our
first step to answer this question was to investigate the pro-
portion of developers that contribute to design discussions
in a project. Figure 2(b) shows these results considering
each project. A mean of 26 + 7% of developers per project
contribute to at least one comment regarding a design as-
pect. We inspected the projects with proportion above 30%
(e.g., Bitcoin, Django, Rails, Symfony). These projects have
a large number of committers and they are well known and
established open source communities, which may explain the
fact that more developers contribute to their design.

In a second step, to further investigate developers’ con-
tribution, we measure the coverage of each developer. Fig-
ure 2(c) shows the coverage of developer per project. Each
point in the graph represents a developer of a project in y
axis. As we can see, the majority of developers contribute
to less than 10% of design discussions. In fact, 99% of devel-

!The standard metric to evaluate classifiers, which stands
for the percentage of instances correctly labeled.

342

opers contribute to less than 15% of all design discussions
in their respective projects. This results lead us to conclude
that very few developers contribute to a broader range of
design discussions, while most of the developers contribute
to few design discussions.

Several factors might lead to the scenario in which very
few developers contribute to a broad range of design dis-
cussions. This scenario suggests that these developers play
a central role in their projects. We took a step forward to
investigate one of the factors that might be correlated to de-
veloper’s ability to discuss design in a broad range. To do so,
we measured the relationship between the proportion of de-
velopers’ commits and their respective coverage. Figure 2(d)
plots the coverage against the percentage of commits of all
developers studied. The line represents the best fit for the
data with 95% of confidence interval. We used Spearman’s
method and found a strong correlation (74%) between these
two variables. As we can see, the developers with high level
of Coverage are also the developers responsible for a high
percentage of commits in their respective projects.

4. DISCUSSION

Walking architecture. Our results show that a very
small number of developers have high levels of design dis-
cussions coverage. This result is aligned to a previous work
that name this small set of developers as “walking architec-
ture” [8]. The term refers to central developers who evaluate
changes to code that affects design while at the same time
update knowledge about design decisions. We argue that
further work should invest in driving design issues to cen-
tral developers. Through our classifier, researchers may use
information about design discussions to build mechanisms
to improve communication among developers. When de-
velopers discuss design often, they update their knowledge
about the system and may achieve Conceptual Integrity —
the uniformity of the understanding that the development
team has about the software [9].

Developers’ role. The high correlation between com-
mits and design discussion coverage reveals that there is no
clear separation between designers and developers role in
these projects. Developers that discuss design in a broad
range are the ones who most contribute to the code of the
studied systems. The possible simple explanation for this
scenario is the cumulative knowledge of code and design that
these developers gain overtime. As time goes by, naturally
these developers are responsible for the discussions, once

they have a deeper knowledge about the system than the
other committers.

Developers’ contribution. We were somewhat sur-
prised by the proportion of developers that do not contribute
to design discussions (64%). Due to the fact that we ana-
lyzed open-source projects, we were expecting contributions
from more developers. Specially because these projects are
all hosted in GitHub, which provides lightweight mecha-
nisms to promote comments and discussions during software
development.

Classifier’s Performance. One possible drawback of
using Decision Tree classifier is the performance issue. While
the Naive Bayes 10-fold cross validation took only 9 seconds
to finish, the Decision Tree validation took approximately
4 hours. This happens in the tree construction step of the
algorithm, which takes a meaningful amount of time to build
the branches and rules of the tree, since the combination of
words and bigrams generates several tree nodes. However,
we only need to execute this process once, which pays-off its
cost over time. For this reason, we decided to use Decision
Tree classifier to label the remaining discussions of our study.

Threats. Two threats might influence the results of our
classifier. First, we trained our classifier with approximately
1% of all discussions analyzed. Second, only two researchers
manually classified the discussions. Ideally, we would like
to have a broader range of researchers and practitioners
classifying more discussions. However, we believe that we
achieved a reasonable and reliable amount of training data.
In addition, because we focus our classification on structural
properties of design, our classifier may have missed discus-
sions about other aspects related to design, such as dynamic
and deployment concerns.

5. RELATED WORK

To the best of our knowledge, this is the first work that
quantitatively raises knowledge about design discussions in
open-source projects and their distribution among develop-
ers. However, other researchers have investigated how de-
velopers deal with design and architecture concerns. Lange
and Chaudron [10] interviewed 80 architects and observed
that 66% of them employ UML diagrams to perform design
activities. Cherubini et al. identified that developers usu-
ally externalize design decisions in temporary drawings that
are lost over time [11]. Unphon and Dittrich conducted 15
interviews to qualitatively understand how developers drive
architecture and design concerns in software companies [8].
Two of their results are closely related to ours. First, they
observed the “walking architecture” phenomenon, whose ex-
istence seems to be empirically supported by the data we
analyzed. Second, they observed that design/architecture
documentation might not be used during software develop-
ment due to the usage of other media. In our work, our data
support that, for open-source projects, such media can be
discussions in issues, pull requests, and commits. This last
result is in conformance with Guzzi et al.’s analysis, which
found that developers’ mailing list is not the main player in
OSS project communication, as it also includes other chan-
nels such as the issue repository [12].

6. SUMMARY AND FUTURE WORK

Developers need to maintain, verify, and discuss design
during software development. In this paper, we presented

343

quantitative results indicating that developers address de-
sign through discussions in commits, issues and pull re-
quests. We first built an automated classifier that employs
machine learning to label discussions as design or not. We
evaluated such classifier using 10-fold cross validation, achiev-
ing 94 £+ 1% of accuracy. Then, using our classifier, we au-
tomatically labeled 102,122 discussions. The main observa-
tions about these discussions are: i) 25% of discussions in a
project are about design; ii) 26% of developers contribute at
least to one design discussion; iii) few developers contribute
to a broad range of design discussions. In fact, 99% of de-
velopers contribute to less than 15% of design discussions;
and iv) the very few developers who contribute to a broad
range of design discussions are also the top committers in a
project (correlation 74%).

In this work, we did not organize design discussions in
categories. As a main future work, we intend to achieve
this. As we could observe, the subject of design discussions
varies. For instance, some discussions are related to con-
straints involving classes and interfaces usage, while others
to the suitability of design patterns to solve particular design
issues. After this categorization, we intend to identify which
design aspects attracts more attention from developers. This
will require us to analyze the distribution of developers per
design discussion and identify the topic of such discussions.
In a nutshell, we believe that such outcomes might assist in
the prioritization of design issues, for example.

7. REFERENCES

[1] David Budgen. Software design. Pearson Education, 2003.
[2] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: elements of reusable
object-oriented software. Pearson Education, 1994.

Craig Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design and
Iterative Development,. Pearson Education India, 2012.
Georgios Gousios. The GHTorrent dataset and tool suite.
In Proc. of Working Conference on Mining Soft.
Repositories, MSR’13, pages 233-236, 2013.

Christine Hofmeister, Robert L. Nord, and Dilip Soni.
Describing software architecture with uml. In Soft.
Architecture, pages 145—159. Springer, 1999.

Johannes Fiirnkranz. A study using n-gram features for
text categorization. Austrian Research Institute for
Artifical Intelligence, pages 1-10, 1998.

William B Cavnar, John M Trenkle, et al. N-gram-based
text categorization. Ann Arbor MI, pages 161-175, 1994.
Hataichanok Unphon and Yvonne Dittrich. Software
architecture awareness in long-term software product
evolution. Journal of Systems and Soft., pages 2211-2226,
2010.

Frederick P Brooks. The mythical man-month.
Addison-Wesley Reading, 1975.

C.F.J. Lange, M. R V Chaudron, and J. Muskens. In
practice: Uml software architecture and design description.
IEEE Soft., pages 40—46, 2006.

Mauro Cherubini, Gina Venolia, Rob DeLine, and
Andrew J Ko. Let’s go to the whiteboard: how and why
software developers use drawings. In Proc. of SIGCHI
conference on Human factors in computing systems, pages
557-566, 2007.

Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin
Pinzger, and Arie van Deursen. Communication in open
source software development mailing lists. In Proc. of
International Workshop on Mining Software Repositories,
pages 277-286, 2013.

(3]

(10]

(11]

(12]

